Unit 7: Sample Test

1. Do the following equations describe lines (\mathbf{L}) or planes (\mathbf{P}) ?
a) $[x, y]=[1,1]+s[2,3]$
b) $[\mathrm{x}, \mathrm{y}, \mathrm{z}]=\mathrm{t}[1,2,3]+\mathrm{s}[3,4,-3]$
c) $4 x-5 y+z=7$
2. List two points on each object.
a) $\frac{x-3}{1}=\frac{y+7}{-2}=\frac{z-5}{4}$
b) $2 x-5 y+z=10$
3. What are the three possibilities for the intersection of a line and a plane?
4. Determine the parametric equation of the line that passes through $(2,-1,3)$ and is perpendicular to the plane x $-6 y+4 z=12$. [2]
5. Determine the scalar equation of the plane with x-intercept $=2$, y-intercept $=-1$, and z -intercept $=3$
6. Determine the distance from the point $(2,-1,5)$ to the plane $3 x-3 y+5 z=8$.
7. If the following lines intersect, determine the point of intersection. Otherwise classify the lines. (i.e. describe the same line, are parallel and distinct, or skew) [5]

$$
[\mathrm{x}, \mathrm{y}, \mathrm{z}]=[0,-8,4]+\mathrm{t}[3,1,-1] \text { and } \frac{\mathrm{x}-3}{1}=\frac{\mathrm{y}+7}{-2}=\frac{\mathrm{z}-5}{4}
$$

8.Determine the intersection of $L_{1}: \frac{x-3}{-3}=\frac{y-8}{5}, z=4$ and $\pi_{1}: 7 x-2 y+z-71=0 \quad$ [4]
9.a) Describe the nature of the system.

$$
\begin{align*}
& x+2 y+3 z+4=0 \tag{6}\\
& x-y-3 z-8=0 \\
& x+5 y+9 z+16=0
\end{align*}
$$

b) Determine the intersection of the following 3 planes $x-y-3 z-8=0$
10.Determine the vector equation of the plane that contains the origin and the intersection of: $x+y+z=5$

$$
3 x+y-z=-7
$$

11. Toni has 24 coins (Quarters \mathbf{x}, dimes \mathbf{y}, nickels \mathbf{z}) in her wallet. They are worth $\$ 3.80$.
a) Create two scalar equations in three unknowns to model this situation.
b) Solve the system to determine the algebraic solution.
(i.e. include meaningless values as well)
c) Determine the actual (physical) solution in an efficient and meaningful way.
(Trial and error will only receive 3)
