
Knowledge and Understanding

Use the sketch of f(x) for questions 1, 2 & 3.

- 1. List the places where f(x) is not differentiable.
- 2. Where is f(x) not differentiable because f(x) is vertical?
- 3. For each section place the corresponding letter on the blank.

- $\mathbf{B}) = 0$
- C) > 0
- D) Does Not Exist

- a) f(1) b) f'(3) c) f'(-0.5) d) f''(1)

- 4. State the Product Rule.
- 5. If $y = 5x^2 3x + 10$, give y'(-1)
- 6. If f(2) = -3, f''(2) = 10, g(2) = 4, and g'(2) = 1, then evaluate (fg)' at x = 2.
- 7. The limit gives the slope of the tangent to some function, f(x) at some point $x = \mathbf{a}$.

$$m = \lim_{\Delta x \to 0} \frac{2(3 + \Delta x)^3 - 54}{\Delta x}$$

a)
$$y = \sqrt[5]{5x^3 - 3x}(5 - 4x)^{-3}$$

b)
$$y = \frac{6x - x^2}{\sqrt{1 - 3x}}$$

m =
$$\lim_{\Delta x \to 0} \frac{2(3 + \Delta x)^3 - 54}{\Delta x}$$
 $f(x) =$ $\mathbf{a} =$ 8. Differentiate the following. Do Not Simplify.
a) $y = \sqrt[5]{5x^3 - 3x}(5 - 4x)^3$ b) $y = \frac{6x - x^2}{\sqrt{1 - 3x}}$ c) $y = \frac{(x^4 - 5)^7}{(6x^2 - 3)(5x + 3)^8}$

- 9. From "First Principles" show that if $\mathbf{f}(\mathbf{x}) = \frac{1}{x^2 3}$, then $\mathbf{f}'(\mathbf{x}) = \frac{-2x}{(x^2 3)^2}$ [4]
- 3. Find the equations of the tangents to $y = 2x^3 16$ at the points where the curve touches the x-axis. [5]

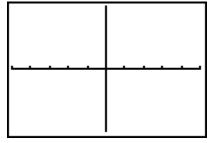
APPS

- 1. An astronaut conducting an intergalactic experiment on planet Adrock launches a small ball into the air off the edge of a short cliff. The height of the ball from the ground below is given by $h(t) = 10 + 18t - 3t^2$, for any value of $t \ge 0$. (t in seconds, h in m)
 - a) How tall is the cliff?
 - b) What is the velocity at 1.5s?
 - c) When does the ball reach its maximum height?
 - d) What is the maximum height of the ball?
 - e) When will the ball land on the ground?
 - f) (Bonus) Is the planet Adrock larger or smaller than earth? WHY?
- 2. A manufacturer of CD players estimates that the cost of making x machines is

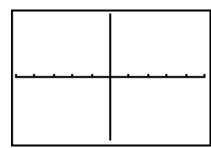
C(x) = 87 000 + 122x and the demand (price) function is
$$p(x) = \frac{600000 - x}{1000}$$

- a) What is the revenue function?
- b) What is the marginal (ROC) revenue if the manufacturer sells 250 000 players?
- c) What is the actual revenue of the 250 000th CD player sold? (between 250000 and 250001)
- d) What profit will the manufacturer make if she sells 2500 000 players?
- e) What is the marginal (ROC) profit if she sells 250 000 players? Should she make more or less than 250 000 CD players? Why?

Communication


1. Each of the following functions is defined at x = 3 but not differentiable at x = 3. Cleary explain why each function is not differentiable there.

a)
$$f(x) = \sqrt{3-x}$$


b)
$$f(x) = (x-3)^{\frac{1}{3}}$$

c)
$$f(x) = |x-3|$$

The best explanations will involve graphical and algebraic reasoning.

TIPS:

- 1. Determine the equation(s) of the tangent(s) to the curve $y = 10x x^2 16$, from (1, 18).
- 2. The line y + 2x = 0 is tangent to y = F(x). Determine F(x) if $F'(x) = 4x^3 + 2$.