Part A: Answer in the space provided. One Mark Each. 1. Sketch the curves. 2. Solve the following. a) $2\ln(e^{\frac{x}{2}}) = 5$ b) $e^{\frac{1}{3}\ln 8} = x$ c) $q = \ln 1$ d) $\frac{dy}{dx} = 3y$ (give a function) 3. Evaluate the limits. a) $\lim_{x\to 0} (1+6x)^{\frac{1}{x}}$ b) $\lim_{x\to 0^+} e^{\ln(x)}$ c) $\lim_{x\to 0} \frac{\cos x - 1}{x}$ d) $\lim_{x\to 0} \frac{\sin x}{5x}$ 4. Differentiate. a) $y = \ln x^5$ b) $y = e^{\sin x}$ c) $y = 12^x$ d) $f(x) = \cos 3x$ e) $f(x) = \sin^2 x$ f) $f(x) = \cot x$ 5. Given $f(x) = e^{2x}$, determine the value of $f^{(11)}(1)$. 1. Differentiate the following. Do Not Simplify. e) $y = (\sin x)(\ln x)$ b) $y = (e^x + \sqrt[3]{\cos x})^7$ c) $y = \frac{\sqrt{1-\tan x}}{3x^3}$ d) $y = \ln(\tan^2 e^{2x})$ 2. Find the equation of the tangent to $y = \sin x \tan \frac{x}{2}$, when $x = \frac{\pi}{3}$ [5] 3. Show that if $f(x) = \ln\left(\sqrt{\frac{1+\cos x}{1-\cos x}}\right)$, then $f'(x) = -\csc x$ **APPS** 1. The position of a certain oscillating (vibrating) object is given by $s = 8\cos(2t + \frac{\pi}{3})$.

- a) Determine the velocity and acceleration of the body.
- b) What is the maximum velocity the particle will obtain?
- c) What is the earliest time this maximum be obtained (t > 0) [1]

d) What is the objects' position when it has maximum velocity? [1]

2. After *t* seconds, the electric charge *A* of a circuit decays according to the formula $\frac{t}{2}$

 $A = A_0 e^{-\frac{d}{d}}$, where A_0 is the initial charge and *d* is a real constant. The initial charge of 10

units was reduced to $\frac{10}{a}$ units in 3 sec. Find the rate of charge of charge at 3 seconds.

Communication.

The table of values is for the functions, $Y_1 = \ln(x)$ and $Y_2 = \ln(ex)$.

- a) Fill in the blanks in the first two columns. **Show your work.**
- b) Fill in the column for Y_2 without a calculator. Explain why this was an easy task.
- c) Calculate Y_1^{\prime} and Y_2^{\prime} . Show that they are equal. Explain why this makes sense.

TIPS

Level:_

1. The population *P* of a certain species of animal is given by $P = e^{-at}$, where *a* is constant and *t* is time in years. Show that the rate of change of population of this species is -aP.

2. Prove that
$$y = \sec x + \tan x$$
 is always increasing on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

3. You have a picture of the function $y = r^x$ and its derivative. Which is which? What is the value of r?

[2]

[1]