Part A: Answer in the space provided. One Mark Each.

1. Sketch the curves.
b) $y=\ln (-x)$
2. Solve the following.

a) $2 \ln \left(e^{\frac{x}{2}}\right)=5$
b) $e^{\frac{1}{\ln } 8}=\mathrm{x}$
c) $q=\ln 1$
d) $\frac{d y}{d x}=3 y$
(give a function)
3. Evaluate the limits.
a) $\lim _{x \rightarrow 0}(1+6 x)^{\frac{1}{x}}$
b) $\lim _{x \rightarrow 0^{+}} e^{\ln (x)}$
c) $\lim _{x \rightarrow 0} \frac{\cos x-1}{x}$ d) $\lim _{x \rightarrow 0} \frac{\sin x}{5 x}$
4. Differentiate. a) $y=\ln x^{5}$
b) $y=e^{\sin x}$
c) $y=12^{x}$
d) $f(x)=\cos 3 x$
e) $f(x)=\sin ^{2} x$
f) $f(x)=\cot x$
5. Given $f(x)=e^{2 x}$, determine the value of $f^{(11)}(1)$.
6. Differentiate the following. Do Not Simplify.
b) $y=\left(e^{x}+\sqrt[3]{\cos x}\right)^{7}$
c) $y=\frac{\sqrt{1-\tan x}}{3 x^{3}}$
d) $y=\ln \left(\tan ^{2} e^{2 x}\right)$
e) $y=(\sin x)(\ln x)$
7. Find the equation of the tangent to $y=\sin x \tan \frac{x}{2}$, when $x=\frac{\pi}{3}$
8. Show that if $f(x)=\ln \left(\sqrt{\frac{1+\cos x}{1-\cos x}}\right)$, then $f^{\prime}(x)=-\csc x$

APPS

1. The position of a certain oscillating (vibrating) object is given by $s=8 \cos \left(2 t+\frac{\pi}{3}\right)$.
a) Determine the velocity and acceleration of the body.
b) What is the maximum velocity the particle will obtain?
c) What is the earliest time this maximum be obtained ($\mathrm{t}>0$)
d) What is the objects' position when it has maximum velocity?
2. After t seconds, the electric charge A of a circuit decays according to the formula $A=A_{0} e^{-\frac{t}{d}}$, where A_{0} is the initial charge and d is a real constant. The initial charge of 10 units was reduced to $\frac{10}{e}$ units in 3 sec . Find the rate of change of charge at 3 seconds.

Communication.

Level: \qquad
The table of values is for the functions, $\mathrm{Y}_{1}=\ln (\mathrm{x})$ and $\mathrm{Y}_{2}=\ln (e x)$.
a) Fill in the blanks in the first two columns. Show your work.
b) Fill in the column for Y_{2} without a calculator. Explain why this was an easy task.
c) Calculate $\mathrm{Y}_{1}{ }^{\prime}$ and $\mathrm{Y}_{2}{ }_{2}$. Show that they are equal. Explain why this makes sense.

TIPS

Level

1. The population P of a certain species of animal is given by $P=e^{-a t}$, where a is constant and t is time in years. Show that the rate of change of population of this species is $-a P$.
2. Prove that $y=\sec x+\tan x$ is always increasing on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
3. You have a picture of the function $y=r^{x}$ and its derivative. Which is which? What is the value of r ?

