K/U

1) Determine an expression for $\frac{d y}{d x}$. $3(\mathrm{y}-2)^{3}-\mathrm{x}^{3}=4 \mathrm{x}-6$.
2) What is the absolute min and absolute max of the following function on $[-5,2]$.

$$
\begin{equation*}
f(t)=t^{3}-12 t+2 \tag{3}
\end{equation*}
$$

3) Determine the absolute maximum and minimum values of $f(\mathrm{x})=\mathrm{x}^{2} e^{\mathrm{x}}$ on $\mathrm{x} \in[-5,1]$.
[4]
4) A particle is moving along the x-axis according to $s(t)=t+\sin (t)$ where t is in seconds, t ≥ 0, and $\mathrm{s}(\mathrm{t})$ is in meters.
a) Give the velocity function of the particle in terms of t.
b) How fast is the particle traveling at π seconds?

c) What is the average velocity in the first 2π seconds?
d) When is the particle at rest?
5) The perimeter of a rectangle is 36 m . Use a calculus approach to determine the maximum area of such a rectangle. [4]

APPS

6) What is the area of the largest rectangle that has its base on the x -axis, its lower left corner at $(0,0)$ and its upper right corner on the graph of $f(x)=\sqrt{9-x}$? [5]
7) An open top box, with a square base is being designed. Material costs $12 \phi / \mathrm{cm}^{2}$. What is the largest box that can be built for $\$ 51.84$. [5]
8) Car A is 40 km east of Car B and begins moving west at $40 \mathrm{~km} / \mathrm{h}$. At the same moment, Car B begins to move north at $70 \mathrm{~km} / \mathrm{h}$. What is the closest distance in kilometres the cars will be from each other and at what time t, in hours, will that distance occur? [5]

TIPS

9) Find the point on the parabola $y=10-x^{2}$ closest to the point $(0,5.5)$. [6]
10) A company is producing Netbook computers. In this manufacturing process, the number of defective computers that must be rejected tends to increase as the daily output increases. The number of rejects \mathbf{r} depends on the total daily output, \mathbf{x}, according to the equation: $r(x)=\frac{60 x}{250-x}$, for $\mathrm{x} \leq 180$ where 180 is the maximum possible output. Each computer produced is either sold or rejected. The company makes a profit of $\$ 300$ for each computer sold but loses $\$ 100$ for each one rejected. [6]
a) What is the profit if they produce the maximum number of computers?
b) What output will maximize the profit?
