K/U

- 1) Determine an expression for $\frac{dy}{dx}$. $3(y-2)^3 x^3 = 4x 6$. [2]
- 2) What is the absolute min and absolute max of the following function on [-5,2].

$$f(t) = t^3 - 12t + 2$$

- 3) Determine the absolute maximum and minimum values of $f(x) = x^2 e^x$ on $x \in [-5, 1]$. [4]
- 4) A particle is moving along the x-axis according to s(t) = t + sin(t) where t is in seconds, t ≥ 0 , and s(t) is in meters. [6]
 - a) Give the velocity function of the particle in terms of t.
 - b) How fast is the particle traveling at π seconds?
 - c) What is the average velocity in the first 2π seconds?
 - d) When is the particle at rest?
- 5) The perimeter of a rectangle is 36 m. Use a calculus approach to determine the maximum area of such a rectangle. [4]

APPS

- 6) What is the area of the largest rectangle that has its base on the x-axis, its lower left corner at (0, 0) and its upper right corner on the graph of $f(x) = \sqrt{9-x}$? [5]
- 7) An open top box, with a square base is being designed. Material costs 12¢/cm². What is the largest box that can be built for \$51.84. [5]
- 8) Car A is 40 km east of Car B and begins moving west at 40 km/h. At the same moment, Car B begins to move north at 70 km/h. What is the closest distance in kilometres the cars will be from each other and at what time *t*, in hours, will that distance occur? [5]

TIPS

- 9) Find the point on the parabola $y = 10 x^2$ closest to the point (0, 5.5). [6]
- 10) A company is producing Netbook computers. In this manufacturing process, the number of defective computers that must be rejected tends to increase as the daily output increases. The number of rejects **r** depends on the total daily output, **x**, according to the equation: $r(x) = \frac{60x}{250 x}$, for $x \le 180$ where 180 is the maximum possible output. Each computer produced is either sold or rejected. The company makes a profit of \$300 for each computer sold but loses \$100 for each one rejected. [6]
 - a) What is the profit if they produce the maximum number of computers?
 - b) What output will maximize the profit?

[3]