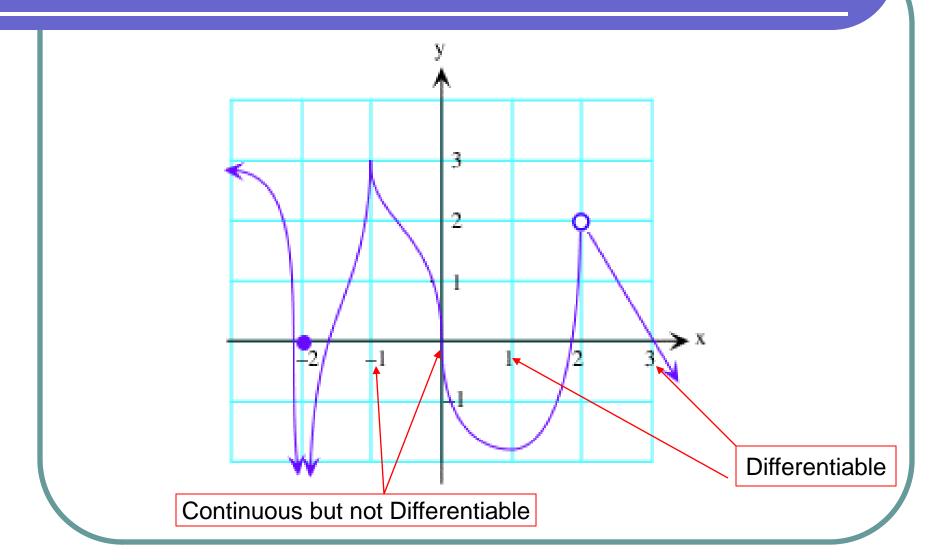
Graphical Representation



Differentiable

• f is differentiable at point "a" if f'(a) exists

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

 f is differentiable on the subset of its domain if it is differentiable at each point of the subset.

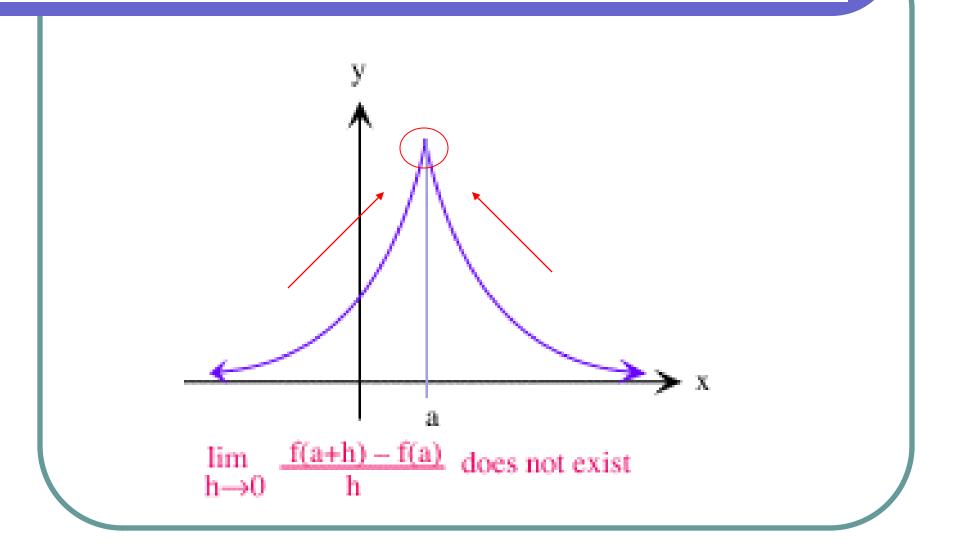
Undifferentiable

- f is not differentiable when
- 1. The limit does not exist, i.e.

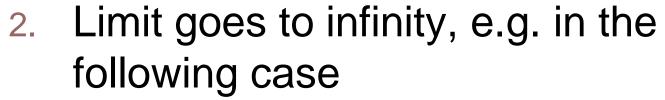
$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$
does not exist.

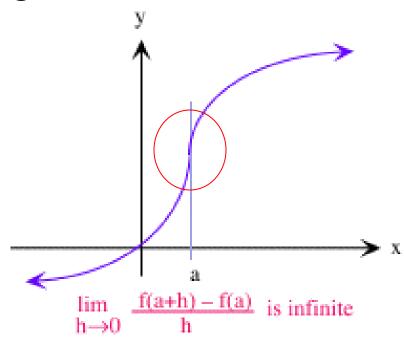
This situation, when represented in graphical form leads to a cusp in the graph

Undifferentiable

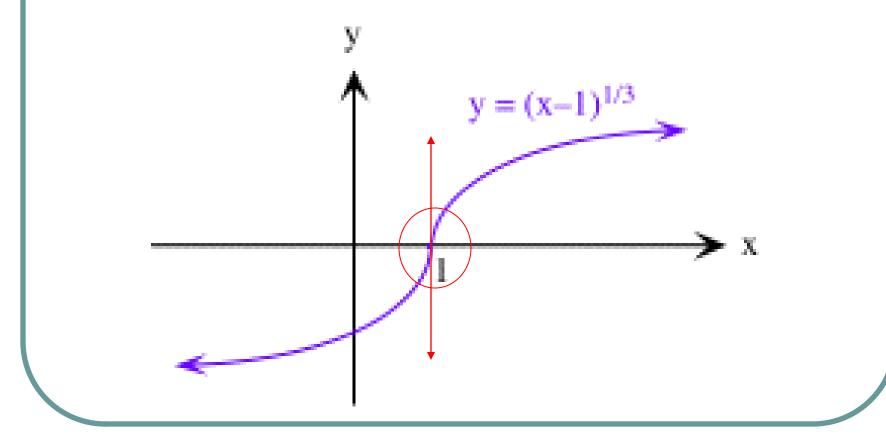


Undifferentiable

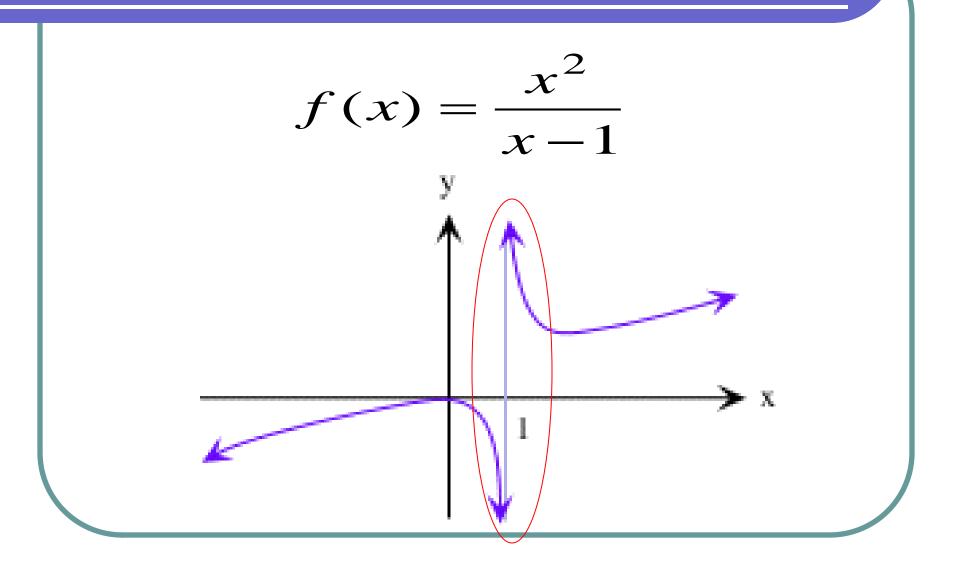




Isolated Non – Differentiable Points



Isolated Non – Differentiable Points



Difference of Opinion

Domain of f(x) is THE bone of contention

 f(x) is not differentiable throughout its domain

The Question

 Are all continuous functions differentiable ? V $y = (x-1)^{1/3}$ х

Another Question

If f is not continuous at point a, then is it differentiable at that point ?

Are all differentiable functions continuous ?

YES

Mathematically provable and easy to understand.

Proof of Continuity

 Suppose f(x) is differentiable at x=a

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

$$\begin{split} \lim_{h \to 0} [f(a+h) - f(a)] \\ &= \lim_{h \to 0} \left[\frac{f(a+h) - f(a)}{h} * h \right] \\ &= \lim_{h \to 0} \left[\frac{f(a+h) - f(a)}{h} \right] * \lim_{h \to 0} h \\ &= f'(a) * 0 \\ &= 0 \end{split}$$

Continuity

 $\lim_{x \to a} f(x)$ exists & $\lim_{x \to a} f(x) = f(a)$