Graphical Representation

Continuous but not Differentiable

Differentiable

- f is differentiable at point "a" if $f^{\prime}(a)$ exists

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

- f is differentiable on the subset of its domain if it is differentiable at each point of the subset.

Undifferentiable

- f is not differentiable when

The limit does not exist, i.e.

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

does not exist.

This situation, when represented in graphical form leads to a cusp in the graph

Undifferentiable

$\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$ does not exist

Undifferentiable

2. Limit goes to infinity, e.g. in the following case

Isolated Non - Differentiable Points

- Consider the following examples

Isolated Non - Differentiable Points

$$
f(x)=\frac{x^{2}}{x-1}
$$

Difference of Opinion

- $f(x)$ is differentiable throughout its domain

Domain of $f(x)$ is THE bone of contention

- $f(x)$ is not differentiable throughout its domain

The Question

- Are all continuous functions differentiable ?

Another Question

- If f is not continuous at point a, then is it differentiable at that point?

One More

- Are all differentiable functions continuous ?

YES

- Mathematically provable and easy to understand.

Proof of Continuity

- Suppose $f(x)$ is differentiable at $x=a$

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

$$
\begin{aligned}
& \lim _{h \rightarrow 0}[f(a+h)-f(a)] \\
& =\lim _{h \rightarrow 0}\left[\frac{f(a+h)-f(a)}{h} * h\right] \\
& =\lim _{h \rightarrow 0}\left[\frac{f(a+h)-f(a)}{h}\right] * \lim _{h \rightarrow 0} h \\
& =f^{\prime}(a) * 0 \\
& =0
\end{aligned}
$$

Continuity

$\lim _{x \rightarrow a} f(x)$ exists \&

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

