Curve Sketching

Page 207-213

Algorithm for Sketching any Curve (Page 212)

- 1. Determine discontinuities and asymptotes
- 2. Determine intercepts using f(x)
- 3. Determine critical points using f'(x)
- 4. Determine intervals of increase/decrease to check if critical points are local maxima, minima, or neither
- Determine points of inflection and concavity using f''(x)
- 6. Determine end behaviours of the function

Keep in Mind

- You won't need all of these steps in every situation
- You are familiar with the basic shapes of many functions so far. Use this knowledge to your advantage

What do you think the graph will look like?

- 1. Discontinuities? None
- 2. Intercepts: y=0, x=0, 2

First derivative: $f'(x) = 4x^3 - 12x^2 + 8x$

$$f'(x) = (4 x) (x - 2) (x - 1)$$

- Critical Points: x = 0, 1, 2
 (0,0), (1, 1), (2, 0)
- 4. Inc/dec

	Interval	4x	x-2	x-1	f'(x)	inc/dec
	(-inf <i>,</i> 0)	-	-	-	-	dec
	(0, 1)	+	-	-	+	inc
	(1, 2)	+	-	+	-	dec
So w	e2hiatve	mins @	(O, ⊕), (i	2, 0) an	d a max	i@ (1, 1

Second derivative: $f''(x) = 12 x^2 - 24 x + 8$ f''(x) = (x - 0.42) (x - 1.58)

Inflection points: x = 0.42, 1.58
 (0.42, 0.44), (1.58, 0.44)

Interval	x-0.42	x-1.58	f''(x)	Concavity
(-inf <i>,</i> 0.42)	-	-	+	up
(0.42, 1.58)	+	-	-	down
(1.58, inf)	+	+	+	up

6. End Behaviours:

$$\{x \to \infty, f(x) \to \infty\} \quad \{x \to -\infty, f(x) \to \infty\}$$

 $f(x) = x^4 - 4x^3 + 4x^2$

Final Sketch Steps:

- 1. Discontinuities
- 2. X and Y Intercepts
- 3. Critical Points
- 4. Inflection Points
- Connect dots using knowledge of intervals (increasing/ decreasing and concavity) and end behaviour

$$f(x) = \frac{x-4}{x^2-4}$$

What do we think it will look like?

$$f(x) = \frac{x-4}{x^2-4}$$

Asymptotes, Discontinuities:
 VAs @ x=2, -2 HA @ y=0

Intercepts:
 y=1, x=4

First derivative:
$$f'(x) = -\frac{x^2 - 8x + 4}{(x^2 - 4)^2}$$
 $f'(x) = -\frac{(x - 7.46)(x - 0.54)}{(x^2 - 4)^2}$

- Critical Points: x = 0.54, 7.46
 (0.54, 0.93), (7.46, 0.07)
- 4. Inc/dec

Interval	-1	(x-0.54)	(x-7.46)	(x^2-4)^2	f'(x)	inc/dec
(-inf <i>,</i> -2)	-	-	-	+	+	dec
(-2, 0.54)	-	-	-	+	+	dec
(0.54, 2)	-	+	-	+	+	inc
(2, 7.46)	-	+	-	+	_	inc
(7.46, inf)	-	+	+	+	+	dec

min @ (0.54, 0.93) and max @ (7.46, 0.07)

$$f(x) = \frac{x-4}{x^2-4}$$

Second derivative:

$$f''(x) = \frac{2\left(-16 + 12 x - 12 x^2 + x^3\right)}{\left(-4 + x^2\right)^3}$$

5. Inflection points:

Not worth it. Do not gain significant info

6. End behaviours

 $\{x \to -\infty, f(x) \to 0\}$ $\{x \to \infty, f(x) \to 0\}$ How is the function approaching 0 at both ends? (Hint: use your calculator) Ans: -inf from below, +inf from above

 $=\frac{x-4}{x^2-4}$ f(x)

Final Sketch Steps:

- 1. Discontinuities
- 2. X and Y Intercepts
- 3. Critical Points
- 4. Inflection Points
- Connect dots using knowledge of intervals (increasing/ decreasing and concavity) and end behaviour

 $f(x) = \frac{x-4}{x^2-4}$

Actual graph:

