Curve Sketching

Page 207-213

Algorithm for Sketching any Curve

 (Page 212)1. Determine discontinuities and asymptotes
2. Determine intercepts using $f(x)$
3. Determine critical points using $f^{\prime}(x)$
4. Determine intervals of increase/decrease to check if critical points are local maxima, minima, or neither
5. Determine points of inflection and concavity using $f^{\prime \prime}(x)$
6. Determine end behaviours of the function

Keep in Mind

- You won't need all of these steps in every situation
- You are familiar with the basic shapes of many functions so far. Use this knowledge to your advantage

Example 1
 $$
f(x)=x^{4}-4 x^{3}+4 x^{2}
$$

What do you think the graph will look like?

Example 1
 $f(x)=x^{4}-4 x^{3}+4 x^{2}$

1. Discontinuities?

None
2. Intercepts:
$y=0, x=0,2$

First derivative: $\quad f^{\prime}(x)=4 x^{3}-12 x^{2}+8 x \quad f^{\prime}(x)=(4 x)(x-2)(x-1)$
3. Critical Points: $x=0,1,2$
$(0,0),(1,1),(2,0)$
4. $\mathrm{Inc} / \mathrm{dec}$

Interval	4x	x-2	x-1	$\mathrm{f}^{\prime}(\mathrm{x})$	inc/dec
(-inf, 0)	-	-	-		dec
$(0,1)$	+	-	-	+	inc
$(1,2)$	+	-	+	-	dec
So wezhiafve mins @ $(0,0),(2,0$) and a maxi@ (1, 1					

Example 1 $f(x)=x^{4}-4 x^{3}+4 x^{2}$

Second derivative: $\quad f^{\prime \prime}(x)=12 x^{2}-24 x+8 \quad f^{\prime \prime}(x)=(x-0.42)(x-1.58)$
5. Inflection points: $x=0.42,1.58$
(0.42, 0.44), (1.58, 0.44)

Interval	$\mathbf{x - 0 . 4 2}$	$\mathbf{x - 1 . 5 8}$	$\mathbf{f}^{\prime \prime}(\mathbf{x})$	Concavity
$(-$ inf, 0.42 $)$	-	-	+	up
$(0.42,1.58)$	+	-	-	down
$(1.58$, inf $)$	+	+	+	up

6. End Behaviours:

$$
\{x \rightarrow \infty, f(x) \rightarrow \infty\} \quad\{x \rightarrow-\infty, f(x) \rightarrow \infty\}
$$

Example 1 $f(x)=x^{4}-4 x^{3}+4 x^{2}$

Final Sketch Steps:

1. Discontinuities
2. X and Y Intercepts
3. Critical Points
4. Inflection Points
5. Connect dots using knowledge of intervals (increasing/ decreasing and concavity) and end behaviour

Example 1
 $$
f(x)=x^{4}-4 x^{3}+4 x^{2}
$$

Actual graph:

Example 2
 $$
f(x)=\frac{x-4}{x^{2}-4}
$$

What do we think it will look like?

Example 2

$$
f(x)=\frac{x-4}{x^{2}-4}
$$

1. Asymptotes, Discontinuities:

VAs @ $x=2,-2 \quad H A @ y=0$
2. Intercepts:
$y=1, x=4$
First derivative: $\quad f^{\prime}(x)=-\frac{x^{2}-8 x+4}{\left(x^{2}-4\right)^{2}} \quad f^{\prime}(x)=-\frac{(x-7.46)(x-0.54)}{\left(x^{2}-4\right)^{2}}$
3. Critical Points: $x=0.54,7.46$
(0.54, 0.93), (7.46, 0.07)
4. $\mathrm{Inc} / \mathrm{dec}$

Interval	$\mathbf{- 1}$	$(\mathbf{x}-\mathbf{0 . 5 4})$	$(\mathbf{x}-\mathbf{7 . 4 6})$	$\left(\mathbf{x}^{\wedge} \mathbf{2}-4\right)^{\wedge} \mathbf{2}$	$\mathbf{f}^{\prime}(\mathbf{x})$	inc/dec
$(-$ inf, -2$)$	-	-	-	+	+	dec
$(-2,0.54)$	-	-	-	+	+	dec
$(0.54,2)$	-	+	-	+	+	inc
$(2,7.46)$	-	+	-	+	-	inc
$(7.46$, inf $)$	-	+	+	+	+	dec

min @ (0.54, 0.93) and max @ (7.46, 0.07)

Example 2
 $f(x)=\frac{x-4}{x^{2}-4}$

Second derivative: $\quad f^{\prime \prime}(x)=\frac{2\left(-16+12 x-12 x^{2}+x^{3}\right)}{\left(-4+x^{2}\right)^{3}}$
5. Inflection points:

Not worth it. Do not gain significant info
6. End behaviours
$\{x \rightarrow-\infty, f(x) \rightarrow 0\} \quad\{x \rightarrow \infty, f(x) \rightarrow 0\}$
How is the function approaching 0 at both ends? (Hint: use your calculator)
Ans: -inf from below, +inf from above

Example 2

$$
f(x)=\frac{x-4}{x^{2}-4}
$$

Final Sketch Steps:

1. Discontinuities
2. X and Y Intercepts
3. Critical Points
4. Inflection Points
5. Connect dots using knowledge of intervals (increasing/ decreasing and concavity) and end behaviour

Example 2

$$
f(x)=\frac{x-4}{x^{2}-4}
$$

Actual graph:

